Conecta con nosotros

Educación

Universidad Autónoma de Madrid: Los posibles caminos a trazar en un terreno singular

Nota de Prensa

Publicado

el

Matemáticos de la Universidad Autónoma de Madrid (UAM) proponen una forma alternativa de calcular el orden de Hironaka, un invariante dentro del problema de resolución de singularidades, central en geometría algebraica.

En matemáticas, cuando hablamos de una variedad, nos referimos al conjunto de soluciones de un sistema de ecuaciones polinomiales. En geometría algebraica se consideran estas soluciones como un conjunto de puntos en el espacio que dan lugar a un objeto geométrico (por ejemplo, una superficie o una curva en el espacio). 

Los puntos singulares (o singularidades) son aquellos en los que todo se complica. En una variedad no singular se pueden dar coordenadas con un buen comportamiento: se pueden asociar valores a cada punto de la variedad, de tal modo que pequeñas variaciones de las coordenadas dan lugar a pequeñas variaciones de los valores asociados. En los puntos singulares no se pueden usar coordenadas y los valores asociados pueden dar grandes saltos.

La resolución de singularidades pretende aproximar una variedad con singularidades mediante una variedad sin ellas. En el estudio algorítmico de este problema, se utilizan invariantes asociados a los puntos singulares, que son indicadores del nivel de dificultad que estos suponen. El invariante más importante es el llamado orden de Hironaka. 

En un trabajo reciente, matemáticos de la Universidad Autónoma de Madrid (UAM) han demostrado que este invariante se puede encontrar estudiando arcos suficientemente genéricos de la variedad. 

El problema de las singularidades

Las singularidades, y el problema de su resolución, llevan siendo objeto de estudio más de cien años. Su interés reside principalmente en el obstáculo que la presencia de estas supone para la demostración de resultados matemáticos, incluso cuando estos son conocidos en su ausencia.

Actualmente no se sabe si para cualquier variedad en un contexto general siempre es posible encontrar una resolución, aunque para variedades definidas sobre cuerpos con característica cero (por ejemplo, sobre los números complejos) la respuesta afirmativa le valió la medalla Fields a H. Hironaka en 1970. 

Más adelante, J. Nash (Nobel de Economía en 1994 y Premio Abel en 2015) sugirió los arcos como fuente de información: Comprender aspectos del proceso de resolución de singularidades de aquellas variedades para las que se conoce que existe, podría ayudar a vislumbrar cómo sería el proceso, en caso de existir, para las que se desconoce. Varios investigadores han trabajado en distintas versiones de esta idea en de los últimos años. 

“Nuestro uso de los arcos se centra en comprender la versión algorítmica de la resolución”, afirman los investigadores.

“Los arcos de una variedad centrados en un punto P son, de algún modo, la ampliación bajo una lupa exhaustiva de cada uno de los posibles caminos que se pueden trazar en la variedad pasando por P. El conjunto de posibles comportamientos de estos (infinitos) caminos cerca de P proporciona información sobre cómo de singular es P”, explican.

La aportación de este trabajo consiste en estimar el orden de Hironaka, utilizando la información que proporcionan los arcos: “demostramos que basta mirar algunos de los arcos de la variedad que están centrados en un punto P para estimar el orden de Hironaka asociado a P”. 

“Otro de nuestros resultados —agregan los investigadores— viene a decir que el orden de Hironaka también se puede leer estudiando los conjuntos de contacto: el conjunto de todos los arcos centrados en un punto singular P puede dividirse en estratos, de manera acorde a cómo de estrecho es el contacto de cada arco con P. Es decir, podremos distinguir unos arcos de otros en función de cómo de complicados se vuelvan los caminos al acercarse a P. Estos estratos conforman los distintos conjuntos de contacto de los arcos con la variedad en P.”

Según el trabajo, publicado en Manuscripta Mathematica, la utilidad principal de este resultado no es tanto calcular el orden de Hironaka explícitamente, ya que en muchos casos puede ser igual de difícil en la práctica que con otros métodos más tradicionales, sino la certeza de que este está relacionado con los arcos de la forma concreta descrita en el artículo. 

“Lo interesante de esta relación es que nos abre una nueva puerta a entender particularidades del proceso de resolución que aún no comprendemos”, concluyen los autores.

Para llegar a este resultado, que conecta distintos aspectos del estudio de la resolución de singularidades en los que han trabajado distintos investigadores en los últimos años, los autores utilizaron herramientas de álgebra conmutativa y geometría algebraica. 

Educación

La Universidad Autónoma de Madrid convoca elecciones a rector/a

Nota de Prensa

Publicado

el

El campus de la Universidad Autónoma de Madrid, vacío por la suspensión de la docencia presencial

Universidad Autónoma de Madrid  – La Universidad Autónoma de Madrid (UAM) celebrará elecciones a rector/a el próximo 21 de abril, una vez concluido el mandato del actual rector Rafael Garesse.

El plazo de presentación de candidaturas finalizará el próximo 9 de marzo. Al día siguiente se hará pública la proclamación provisional de candidatos y el día 23 de marzo, la proclamación definitiva. La campaña electoral se desarrollará del 6 al 20 de abril, de acuerdo con el calendario electoral publicado en la web de la UAM.

La primera vuelta de estas elecciones tendrá lugar el 21 de abril. En el caso de que ningún candidato obtenga mayoría absoluta, se producirá una segunda vuelta el 13 de mayo entre los dos candidatos más votados.

Estas elecciones tendrán carácter presencial y como novedad respecto a los comicios anteriores se han ampliado los plazos de ejercicio de voto anticipado y por correo para favorecer la máxima participación. Aunque se trabaja junto con el resto de las universidades madrileñas en la implantación de un sistema de voto electrónico para procesos electorales, éste se encuentra aún en desarrollo. La jornada de votación comenzará a las 10 horas y concluirá a las 19 horas.

Están convocados a las urnas todos los miembros de la comunidad universitaria: personal docente e investigador, personal de Administración y Servicios y estudiantado, que contribuirán con su voto, en las proporciones fijadas estatutariamente, a determinar quien ocupará el cargo de rector o rectora los próximos cuatro años.

El profesorado doctor con vinculación permanente tendrá una ponderación del 55%, el profesorado permanente no doctor y profesorado y personal investigador contratados no permanente, de un 5%; el personal docente e investigador en formación de un 4%; el estudiantado de un 27% y, finalmente, el personal de administración y servicios de un 9% sobre el total.

Todo el proceso estará tutelado por la Comisión Electoral de la universidad, donde están representados todos los sectores de la comunidad universitaria.

Continuar leyendo

Educación

SkillPills o cómo aprender con pequeñas dosis diarias

Sonia Crespo

Publicado

el

Skillpills

Hoy, de mano de ASEYACOVI, la Asociación de Empresarios y Autónomos de Colmenar Viejo, conocemos a Concha Pérez, una pedagoga con 33 años de experiencia que ha transformado y creado su propia empresa:  SkillPills, una webapp de formación que busca una estimulación constante en pequeñas dosis diarias, muy motivadora y entretenida para el alumno.

El primer paso comenzó con la visión y el rastreo de lo que hacía su competencia en el mercado, de esa manera ella pudo encontrar las claves para encontrar la diferenciación en su sector y poder destacar de entre el resto de competidores.

¿Por qué aprende la gente? fue la primera cuestión que se planteó, y las respuestas enseguida llegaron: para conseguir conocimientos, lograr actitudes…

En la formación convencional se ofrece mucha información acaba diluida en el tiempo, y es un esfuerzo que no ha tenido recompensa.

De esa idea nació SkillPills, una webapp de formación que busca una estimulación constante en pequeñas dosis diarias, muy motivadora y entretenida para el alumno. Así se forma al alumno día a día como si regaras una planta con un goteo. SkillPills plantea cada día tener un contenido pequeño de forma que esa formación sea muy agradable, continua y apetecible, sin restarla eficacia.

Qué es una Pill?

Una Pill es una «Píldora Fácil de Conocimiento» que podrás absorber en cualquier momento y desde cualquier sitio.

Las Pills están diseñadas especialmente para cada usuario dependiendo de cuál sea su puesto.

Podrás acceder a tu Pill pendiente en cualquier momento desde la home de tu webapp.

El sistema fomenta la realización de Pills por medio de la gamificación. Tendrás que realizar la Pill pendiente para poder desbloquear la siguiente.

Sabrás cuánto tiempo te va a llevar hacer la Pill antes de entrar a realizarla.

La temática de estas pills está enfocada a las ‘soft skills’ o habilidades blandas. Entre otros contenidos encontramos: Gestión del tiempo, resolución de conflictos, liderazgo, gestión del estrés, etc.

Modo de contacto: contacta@skillpills.es o en el teléfono 629454683

 

 

Continuar leyendo
Escúchanos Onda Cero Madrid Norte On line
Empresarios en la Onda Onda Cero Madrid Norte Sanidad

Aprende a bajar tu ritmo, conoce ‘Soy emoworker’

Consejos de Cocina

Nuestra receta: Espinacas cremosas y crujientes con pistachos

Consejos de Cocina

Restaurante Lutín de Cerceda guía para cocinar Tataki de Salmón con sésamo y wakame

Economía Empresarios en la Onda Onda Cero Madrid Norte

¿Pediste un crédito ICO? Consulta los detalles de ampliación de su devolución

Educación Educación | Colmenar Viejo Empresarios en la Onda Gente | Colmenar Viejo Onda Cero Madrid Norte

SkillPills o cómo aprender con pequeñas dosis diarias

Motor

¿Quieres probar un coche eléctrico? Ahora Ferciauto te lo lleva a tu casa

Consejos de Cocina Onda Cero Madrid Norte

Aprende a cocinar unos deliciosos spaguetti con verde de cebolleta y alistados al curry

Emprendedores en la Onda Gente | Colmenar Viejo

NutriHábito mejora tu calidad de vida con hábitos saludables alimentarios

Psicología para el día Sanidad | Tres Cantos

¿Qué efectos psicológicos tiene el desempleo?

Consejos de Cocina

¿Cómo cocinar unas natillas de chocolate blanco? Nos enseña Restaurante Lutin de Cerceda

,